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We consider the hypersonic flow past a wedge in which a magnetic field 
is energized, under the assumption that the region between the body and 
the shock wave is narrow. In 111, the solution was obtained rot tbe 
case where the direction of the magnetic field is perpendicular to the 
surfaCe of tbe body. Here we shall assume the angle between the magnetic 
field and the body to be arbitrary. In contrast to the solution in Cd, 
in the present case, the pressure on the wedge differs from that calcu- 
lated from the Newtonian formula. As a result, instead of the separa- 
tion [II (the velocity at some point on the surface vanishing), cavita- 
tion may occur under derinite conditions, i. e. the pressure at some 
point may vanish in the presence of the magnetic field. 

ge find the locations of the separation and cavitation points as 
functions of the wedge angle and the angle of Inclination of tbe magnetic 
field. 

1. We shall use the equations of magnetohydrodynamics in orthogonal 

curvilinear coordinates x (length along the body) and y (distance along 

the normal to the body). Ihe gas is assumed to be ideal, perfect, and 

finitely-conducting in the region behind the shock wave. ‘lbe flow region 
between the body and the shock is assumed to be sufficiently narrow 

[2,31, i.e. a = (K - l)/(~ + 1) << 1 (where K is the adiabatic exponent), 

and we neglect in the equations quantities of order E in comparison with 

unity. As a result, we obtain 
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We use the following notation: u and v are the velocity components 
along the x- and y-axes respectively; a is the angle between the tangent 
to the body contour and the magnetic field vector H; p is the pressure; 
p is the density; u is the specific electrical conductivity (below, we 
assume u = const in the shock layer, and u = 0 in the unperturbed flow); 
c is the velocity of light in vacuum; p,,, and U, are respectively the 
density and velocity of the unperturbed flow; R is the radius of curva- 
ture of the contour; L is a characteristic length; r = r(x) is the dis- 
tance from a point on the body contour to the axis of syavnetry; and 
v = 0, 1 respectively, for plane and axisymnetric flows. 

Equation (1.1) is reduced to dimensionless form, with I!&,, pa, and 
p,Um2 as the characteristic quantities for the velocity, density, and 
pressure respectively, while x and y are expressed relative to L. We 
assume that the nondimensional magnetic field intensity parameter 7 is 
of order E -1 . 

As was shown in Cl], the induced magnetic field may be neglected in 
comparison with the given field for magnetic Reynolds’ numbers R,< 1. 
This permits the approximation of separating the problem of calculating 
the fluid dynamic field from equations (1.1) with a given magnetic 
field, from the problem of calculating the induced magnetic field, which 
we ignore here. Moreover, to the assumed accuracy, the magnetic field 
may be considered constant across the shock layer, so that A = H(x). 

To the assumed accuracy, the boundary conditions may be written in 
the form (subscript 0 refers to quantities invnediately behind the shock 
wave, and subscript 1 to quantities at the wall) 

ug= cm 8, po= e-r, p. = sin2 0, Cl,= cosO~dyo/ds-&~tane), q= 0 (1.2) 

(Y = y,,(x) - (is the eWation of the shock wave) 

Here 8 = e(x) is the angle between the tangent to the body contour 
and the unperturbed free stream velocity. In [l] , equations (1.1) were 
solved for the flows around a wedge and a cone (for the cone the solu- 
tion was given in other coordinates) when a = r/2. We note that equa- 
tions ( 1.1) were also considered in [41 , but no example of a solution 
was given there. As follows from the second equation in (1.1)) the pre- 
sence of the magnetic field directed at an arbitrary angle a # r/2 to 
the body contour is apparently equivalent to some fictitious centrifugal 
force, which, depending on the sign of sin 2a, is directed either toward 
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the body or away from it; in other words, it reduces to an increase or 
decrease in pressure in agreement with the value calculated from 
Busemann’ s formula [2,3] . 

Y’e transform equation (1.1) to the independent variables of Crocco x 
and v (the stream function), where ‘y is defined by the expressions 
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As a result, we get* 
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The equation of the shock wave in these coordinates become 
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‘Ihe equation of the body surface is +J = 0. On the line v = yyo(x), 
conditions (1.2) obtain, the last equation of which becomes in the new 
variables 

f$_ 
dx - - 

ry [vO _1- (1 _1- E) sin 91 (1.6) 

while the other conditions remain unchanged. 

The first term on the right-hand side of equation (1.5) is of order 
unity, while the second is of order E. This permits solving the problem 
to the assumed accuracy by two successive approximations. First, we 
solve the Cauchy problem for the first three equations in (1.4) under 
the conditions 

From this solution, when the magnetic field strength tends to zero 

(q - 01, we obtain the well-known Busemann pressure formula [2,3] . Using 

.-__ _- 

l The transition from the first equation of (1.1) to the first ewa- 
tion of (1.4) results from an elementary identity of the transform- 
ation, and not from neglecting the term vau/ay in comparison with 
A/& in (1.1). as was stated in 151, where some incorrect Critical 

remarks were made of [Il. 
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the obtained values p(x, q~) and u(x, y), we determine L, from the last 
equation (1.4) and the boundary condition (no flow through the wall) by 
quadrature 

(1.8) 

Setting in (1.8) 

al=-\ r"sin 0 dx 

0 

and substituting the obtained expression for us into equation (1.6)) we 
obtain an equation for the stream function on the shock wave in the 
next approximation, from which, using (1.51, we may determine the equa- 
tion of the shock wave yO = y,(x). 

2. Let us consider the solution to the problem of plane flow about 
the wedge, for the case where the magnetic field is independent of x 
fH = const, tr. = const). 

In equations (1.4)) we set v = 0, R = 00; then the first two equations 
may be written in the following form, when the third equation is taken 
into account 

with the boundary conditions 

110 = cos 0, pO = sin20 for $O=-xsinO (24 

The hyperbolic system (2.1) with boundary conditions (2.2) admits an 
exact solution of the form 

u = 24 (q), P = Ph) (q=II,+~sinQ) 

moreover, from the second equation of ( 2.1) , we have 

Substituting expression (2.3) for p in the first equation of (2.1) 
and integrating the resulting equation for u, we obtain the solution 

Without loss of generality, we may consider in equations (2 3) and 
(2.4) 0 <a <n, since changing the sign of the magnetic field vet tor 
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(i.e. changing the angle from a to a + TT) does not alter the solution. 

After determining u from (2.4)) we find the pressure p from (2.3), and 

the density p from the third equation in (1.4). In order to find the 

distribution of u, p and p along the surface, it is only necessary to 

set v = 0 in the solution. 

From equations (2.3) and (2.4), it follows that the velocity along 

the surface of the wedge always decreases with increasing x. ‘lhe pres- 

sure drops along the surface for 0 < a < ~/2, when the action of the 

magnetic field is equivalent to the centrifugal force in a flow about a 

convex body, and rises with increase in x for n/2 < a < Y, when the flow 

is equivalent to that about some concave body. When the angle 0 + a be- 

tween the magnetic field and the direction of the unperturbed flow velo- 

city is less than ~/2, at a point on the body surface with abscissa 

X=X +, where u = cos (8 + a)/ cos a, the pressure becomes zero; i . e. 

cavitation results from the presence of the magnetic force. The point 

where p = 0 is a singular point for equations (1.1); in some neighbor- 

hood of this singular point the solution loses its validity, since the 

basic assumption p % s-l is violated there. It is clear that the solu- 

tion (2.3), (2.4), cannot be extended into the region x > x ** 

For 8 + a > w/2, at some point with abscissa x = x the velocity u 

becomes zero, i.e. separation occurs [ll . The point x*:)x is also a 

singular point of the solution, and the solution cannot bg’extended into 

the region x > x Iktermining the cavitation and separation points 

from (2.3) and (i’k), we find 

(0 .L- a < x/2, solution valid in region z<z*) 

(2.6) 

(e -1. 2 > n / 2, solution valid in region z < z**) 

In the case of cavitation u > 0 for x < x+, and in the case of sepa- 

ration p > 0 for x < x For 8 t a = r/2, an intermediate case occurs, 

when the separation an a*’ cavitation points coincide 

4ex* = qex,, =Tsln & (e+a=n/2) (2.7) 

As an example. we give in Pig. 1 the quantities 98% and qrx as 

iunctiona of the angle a (the inclination of the l agne~lc fieldj*for 

6 = 45O. Both curves join smoothly for a = 45O, when (2.7) holds. It is 
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interesting to observe that 

2.0 

1.6 

for a = 72*, the Quantity x has a minimum; 
i.e. in this case, Ge effect of a 
magnetic field of given intensity on 

Fig. 1 Fig. 2. 

the flow will be the greatest {earliest separation). In Fig. 2, we give 
the function u = u(Eqx) according to (2.4), and in Fig. 3, the function 

P = p(eqx) according to (2.31, for 
different values of the angle a 
and e = 4P. All the curves, ex- 
cept the one for a = 135’, termi- 
nate at the cavitation point 
{a < 45’) or at the separation 
point (a > 45O). For x = 0, the 
quantities u and p for any a 
agree with the corresponding 
values calculated for the case 
of zero magnetic field: u = cos 8, 
p = sin* 8. 

as 

0.4 

0 

Fig. 3. 

We now determine the form of the shock wave. Denoting in equation 
(1.8) the quantity (pu)-’ by Q, (where CD = @(y’ t x sin (3) is a known 
function), carrying out the differentiation under the integral sign and 
then integrating, we get 

u= --uinUI~(~+~r:sin0)-_~Issinfl)j (2.8) 

Setting y + x sin 0 = 0 in equation (2.8), we get an expression for 
vO on the shock wave. Substituting the resulting expression into (1.6) 
and using the values of 10 and u on the shock waYe (Q(O) = e/cos 8, 
u(O) = cos 0) and integrating (1.6) with respect to z, we have 

I 

90 (2) = - ssinB-sinOcos0 ‘@(xsinO)dz 
\ (2.9) . 
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llere subscript 1 denotes quantities on the wall. From the first equa- 
tion in (2.1), we have along the wall 

Using this equation, we integrate in (2.9) the expression 0(x sin f3) 
and obtain 

(2.10) 

Finally, the equation of the shock may be written in the following 
form, according to (1.5) : 

(2.11) 

The solution obtained for a = x/2 agrees with that [II for the wedge. 
In particular, formulas (2.4), (2.6) and (2.11) become, respectively, 
formulas (2.9), (2.12) and (2.24) in [II. (III formula (2.24) in [LI 
there is a misprint - a minus sign should appear in front of the right- 
hand side). 

In conclusion, we determine the curvature of the shock at the vertex 
of the wedge. From (2.11) and the first equation of (2.1)) we have 

(2.12) 

From this formula, the following curious fact ensues. 

For. a = a,,, where 

cot a, = --- tan 0 - 2 cot 6 (n.‘L!<ro<Tc) 

the shock curvature tends to zero. 

For- T > a > a0 the shock curvature at the vertex of the wedge is 
negative, i.e. the shock wave in this case is convex against the flow. 

In the neighborhood of the separation point, the shock curvature is 
positive - a qualitative picture of the flow for arbitrary a is like 
that given in [l] for a = x/2. In other words, for w > a > a,,, the shock 
wave has an inflection point in the interval 0 < x < x *** 
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